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ABSTRACT
Longform spoken dialog delivers rich streams of informative con-
tent through podcasts, interviews, debates, and meetings. While
production of this medium has grown tremendously, spoken dialog
remains challenging to consume as listening is slower than reading
and difficult to skim or navigate relative to text. Recent systems
leveraging automatic speech recognition (ASR) and automatic sum-
marization allow users to better browse speech data and forage for
information of interest. However, these systems intake disfluent
speech which causes automatic summarization to yield readabil-
ity, adequacy, and accuracy problems. To improve navigability and
browsability of speech, we present three training agnostic post-
processing techniques that address dialog concerns of readability,
coherence, and adequacy. We integrate these improvements with
user interfaces which communicate estimated summary metrics to
aid user browsing heuristics. Quantitative evaluation metrics show
a 19% improvement in summary quality. We discuss how summa-
rization technologies can help people browse longform audio in
trustworthy and readable ways.
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1 INTRODUCTION
Longform spoken dialog is a powerful and intuitive communication
medium that delivers rich diverse streams of informative content in
a variety of formats such as podcasts, interviews, debates, and meet-
ings. They convey a multitude of important topics ranging from
healthcare and equity to current events, economics, and politics.
Moreover, longform audio formats are only increasing in popularity
and availability; consider the explosive growth of podcasts, aver-
aging over 150,000 new podcasts year over year with hundreds of
millions of listeners worldwide. However, users who are interested
in a topic may be unwilling to invest long periods of time listening
to the entirety of a long audio. For example, if a colleague emails
you a 30 minute YouTube video about “diversity and inclusion in
the workplace”, you may be interested, but not able to spend 30
minutes. Instead, you might wish to browse the content to quickly
find interesting nuggets of information, then decide whether to
dive deeper.

Unfortunately, longform audio is difficult to skim or browse.
Typical browsing strategies are problematic: skipping around in
an audio player may cause users to miss important details, read-
ing speech transcripts may prove slow and tedious due to the lack
of structure compared to written articles, and listening at higher
speeds saves time but is mentally taxing and may reduce compre-
hension of the material. Clearly, there is a need for people to be able
to quickly and easily access areas of interest in longform spoken
dialog without spending a lot of time.

Recently, advanced in NLP have enabled us to build systems [37]
that use abstractive summarization as a tool to help people browse
and navigate longform audio. The general approach is to first use
automatic speech recognition to transcribe the audio into text
and subsequently use automatic summarization to summarize that
text. Because of current memory limitations of automatic abstrac-
tive summarization language models, longform documents cannot
be summarized at once. Instead, they can be summarized recur-
sively, forming a hierarchy. First, the transcript is broken into 256-
character chunks, then each chunk is summarized. The resulting
summary is re-segmented and re-summarized. The process can be
done repeatedly until the desired summary length is reached. This
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results in a set of top-level "short summaries" that a reader can use
to browse and navigate. For example, a short summary may say
“My parents invested in my first business”. A user who finds this in-
teresting may wish to read a longer and more detailed summary to
discern what the first business was, how much his parents invested,
etc. Thus, automatically generated summaries may be seen as an
outline, providing users information cues to navigate and browse
content to meet their information needs.

Although existing systems for hierarchical navigation have shown
utility in browsing and navigating content without having to listen
to an entire audio file, they face several challenges [41, 64]. Sum-
marization models are not well suited for handling speech errors
as they are trained on well-formed text rather than audio content.
Whereas text is structured into paragraphs with topic sentences,
audio is far less structured and riddled with speech-specific chal-
lenges such as disfluencies, incoherence, and ambiguous pronoun
references which prevent straightforward language modeling. In
order to successfully enable users to browse and navigate longform
audio, systems first have to ensure the hierarchically generated
summaries are easily readable and coherent.

We identify three key elements within hierarchical summariza-
tion that impact user experiences in browsing and consumption of
longform audio:

(1) Readability [9] - summaries that are not immediately com-
prehensible due to vague pronouns or incoherent grammar
impact a user’s ability to quickly understand content.

(2) Accuracy [15, 33] - summaries that are inconsistent with the
source text may provide erroneous information and mislead
users.

(3) Adequacy [30] - summaries that fail to capture important
meaning of the underlying audio or only capture partial
meanings result in users missing possibly critical informa-
tion.

To address these issues, we developed a training agnostic post
processing approach that introduces a set of NLP techniques to
improve summarization quality for speech data in ways which help
users browse effectively. To improve readability we track entities
and impute ambiguous coreferences to eliminate vague references.
To improve accuracy we employ guided text decoding with contra-
diction assessment to enhance summary correctness. To improve
adequacy we reorder sentences in the transcript to form a more
cohesive input, in turn allowing summarization models to more
easily reason through the input content and sufficiently convey the
meaning in generated summaries.

We then present a speech browsing interface where the improved
summaries are presented in a readable format along with visual
information cues that are automatically derived from unstructured
speech transcripts. These information cues quickly and intuitively
provide information scent to users regarding the quality of sum-
mary segments, the degree to which the summarization model
compressed the original content, and the amount of information
the user has been shown. Thus, by providing users insight into
the state of the underlying audio content, users can make better
informed navigation and browsing decisions.

To demonstrate technical performance gains in summary quality
and subsequent improved usability in browsing, we evaluate our
system in the following ways:

(1) Automatic comparisons of generated summaries with gold
standard summary references. Results indicate our system
yields a 19% ROUGE-2 improvement over baselines.

(2) Compared to human annotated "gold" summaries, our sys-
tem’s generated summaries improve by 25% on readability,
10% on accuracy, and 17% on adequacy for specific summary
quality dimensions compared to baseline models.

(3) A qualitative user study showing that the Short Summaries
were able to adequately summarize the content, that heuris-
tics for information gain and summary quality helped build
confidence in the system despite imperfect AI summaries,
and helped them manage the exploration/exploitation trade
off while browsing.

(4) A quantitative user study showing that people were able to
complete recall and information foraging tasks and in about
half the time using the system versus using traditional audio
browsing.

Lastly, we discuss how advances in summarization technologies
can be harnessed to assist users in browsing long unstructured
information in trustworthy and readable ways.

2 RELATEDWORKS
2.1 Automatic Speech Recognition and

Summarization
Automatic Speech Recognition systems (ASR) [16, 56] are used to
transcribe audio (commonly referred to as word recognition) into
source language transcripts [7]. Concretely, in speech-to-text ASR
systems, an audio file is a converted text transcript. Such systems
have recentlymade relatively significant strides in terms of practical
performance and have seen widespread adoption.

State of the art (SOTA) ASR [19] is no longer constrained by
vocabulary and remains relatively robust, encouragingly extending
word recognition to topical domains and noisy audio. SOTA sys-
tems [19] also offer a wide suite of useful services such as automatic
punctuation insertion [3, 22, 79], where raw transcribed text has
punctuation, capitalization and sentence endpointers (.!?) automat-
ically inserted using another language model. Advances in audio
source separation can be used to identify speakers (i.e. speaker
diarization) [71] and enhance difficult-to-hear or noisy dialog. We
emphasize the focus on this work is not on ASR systems; we use
Google Speech-to-Text [19] ASR as a black box and the starting
point for our applications.

Text summarization techniques can be classified into two cate-
gories: abstractive [23] and extractive [8]. Abstractive summariza-
tion generates [66] a new unique summary of text given a context.
Contemporary summarization language models [36, 81] are based
on a transformer [69] architecture. Extractive summarization selects
relevant portions of the input text and concatenates the relevant
portions to compose into a summary. Because of spoken language
noise effects in ASR transcripts, extracting transcript segments
verbatim often leads to poor summaries. Therefore, we opt for
abstractive summarization in our system.
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Many summarization models [28, 53, 80] address speech-induced
specific technical challenges [10, 42, 46, 51]. In tandem, research
is focused on addressing the longform input aspect of speech; pro-
cessing long inputs is notoriously difficult due to context and model
memory constraints. Current research typically adopts a hierarchi-
cal summarization approach to either model long range context or
break up inputs to more tractable sizes (discussed in Section 3.1).
However, naively breaking up inputs means hierarchical summa-
rization often suffers from repeated or lost entities and temporal
fragmentation. By contrast, in our work, we track entities through
coreference imputation, ensure greater summary correctness, and
reorder dialog for better flow.

While the popularity of abstractive summarization datasets con-
tinues to grow, especially in the speech domain, data is still difficult
and prohibitively expensive to collect. Existing longform dialog
datasets (i.e. AMI [50] & ICSI [27]) are primarily focused on meet-
ings or lack gold standard sufficient summaries [12]. Conversa-
tional datasets, SamSum [17] and DialogSum [11] have dialogs that
are in the hundreds of words instead of thousands. Moreover, no
dataset contains intermediate hierarchical summaries, making such
datasets problematic to use for structured browsing and navigating
of longform audio content.

The idea of hierarchical summarization also extends to collab-
orative tools. Wikum+ [67] is system that recursively interleaves
forum posts for people to jointly summarize, creating a summary
tree. Arkose [54] is another tool that proposed merging multiple
hierarchical levels as a way to structure and process unorganized
online large-scale community discussions. While the focus of these
tools is on collaboration, they share the concept of hierarchical
structuring of information to improve user navigation.

2.2 User Browsing Behaviors
Information foraging theory [59] is a concept from HCI that de-
scribes how users navigate and browse a large dataset to satisfy
an information need. When browsing for information, people do
not search linearly. Instead, people "forage" for information, similar
to how animals sniff around for food, scanning from area to area.
When searching for relevant information, users rely on the concept
of “information scent” which they use to estimate how much useful
information is contained on any given path, and how to adjust and
reorient themselves as necessary to retrieve relevant information
[58]. Sensemaking [72] describes the process of searching and form-
ing useful representations from data. When users give meaning and
rationalize information, they draw upon their own collective expe-
riences. As a result, the final understanding an individual arrives at
may vary. Principles in information foraging and sensemaking de-
scribing how users browse and construe information are universal
and provide valuable insights that can be applied towards designing
a system to help users navigate and browse speech.

Various tools already exist to assist users with navigating and
browsing different forms of media, primarily concerned with videos
and the audiovisual domain. Asymmetrically, systems exclusively
for audio and text have primarily been left relatively untouched
in older work (pre-2000s). For audio and text navigation, Speech-
Skimmer [4] is an early tool that lays the foundation in addressing
the challenges and difficulties of navigating and browsing speech

by listening to compressed audio segments and allowing users to
continue listening further into more detailed segments. SCAN [26]
is a prototype speech retrieval and browsing system that aims to
help users navigate poor automatic transcriptions and retrieve mul-
tiple speech transcripts. Navigation systems [39, 63] also attempt
to visually represent audio content and investigate another angle of
helping users navigate audio, particularly meetings, by presenting
concepts discussed as timelines and concept maps that encapsulate
the the underlying speech content.

Video summarization [14, 25] as means for skimming and brows-
ing for information [68] is a popular domain and active area of
research. SceneSkim [57] is an example of sensemaking that made
lengthy multimodal data, video from movies and text from movie
scripts, indexable, enabling users to efficiently search movies for
specific segments. Other work on video browsing and navigation
investigate methods to enrich existing user browsing behaviors;
Swift [47] and Swifter [48] tackle the challenge of real-time seeking
in video scrubbing (where a user drops and drags a the playhead
on a video timeline).

3 BACKGROUND ON AUTOMATIC
HIERARCHICAL SUMMARIZATION

3.1 Challenges and Approaches for
Summarizing Longform Text

Summarizing longform text [1, 6, 78] is an outstanding challenge in
natural language processing.While massive languagemodels are ex-
tremely promising, they require encoding the entire input simulta-
neously into memory. Unfortuately, longform text, especially audio
transcripts, exceed their memory and size constraints. To circum-
vent processing large inputs directly, recent works have adopted
recursive and hierarchical text processing approaches [37, 76, 77, 82]
which are generally concerned with segmenting a longform input
into smaller and more tractable inputs and recursively using a sum-
marization model’s output as another input to obtain increasingly
shorter summaries.

While the hierarchical processing method is not only neces-
sary for longform dialog, it also provides usability benefits. From a
user’s perspective, being able to understand and control the degree
of summarization is immensely valuable as it empowers users to
individually decide the trade-off between time spent consuming
information and the thoroughness of each summary. Hierarchical
summarization affords this by generating multiple summaries of
varying levels of abstraction, allowing a user to read a summary
with a level of detail suiting their needs. Level refers to a subse-
quent shorter recursive summary; the highest set of summaries
are referred to as the Short Summaries. We adopt the hierarchical
approach as the basis of our automatic summarization system.

3.2 Criteria for Improving the Usability of
Hierarchical Summaries for Audio

Althoughmany off-the-shelf abstractive dialog summarization mod-
els are available and have considerably improved, they invariably
perform poorly on longform (20 minute+) audio; stand-alone usage



CHI ’23, April 23–28, 2023, Hamburg, Germany Daniel Li, Thomas Chen, Alec Zadikian, Albert Tung, and Lydia B. Chilton

of these models on longform dialog results in problematic sum-
maries that impact usability. Our research carefully considers these
concerns and posit them as the following three challenges:

Readability [9]. A summary is only as useful as its ability to be
understood by a user. While readability can refer to fluency, it is
critical to view this dimension in the context of speech. We make
the important observation that diectic references in conversation
make readability especially challenging due to constant ambiguous
referencing. Confusing, vague and unintelligible text represents
a significant pain point in automated summarization because not
only does it render a summary useless, it can ruin the users’ trust
in a system by highlighting a particularly unpleasant failure. Poor
readability example: The store will have a sale despite rain tomorrow.
⇒ There will have rains tomorrow but it will have sale. Though the
sentence has some syntactical errors, the pronoun "it" is ambiguous;
without any additional context, it is impossible to understand what
the output is referring to.

Accuracy [15, 33] . Outputting inaccurate summaries has insidi-
ous consequences if there is no indication when bad information
has been communicated. Users may therefore walk away with in-
correct assumptions of the underlying material, undermining trust
in automatic summarization systems. Inaccuracy example: There
will be high winds and heavy rain tomorrow.⇒ The weather will be
cloudy.

Adequacy [30]. Despite summarization being a fundamentally
lossy compression of information, the most useful summaries are
ones that accurately communicate the input passage’s key ideas.
Conversely, if a user reads a summary without reviewing the un-
derlying content, they could unknowingly miss possibly significant
information (i.e. a Type II error). Adequacy refers to how much
of the meaning in the original source text is also conveyed in the
hypothesis [30]. Poor adequacy example: There will be high winds
and heavy traffic on the freeway due to storm congestion.⇒ It will
be windy.

In recursive hierarchical summarization, errors in summaries
will compound and propagate. Thus, it is important to address
these problems at early stages in the summarization process. In this
system, our goal is to improve on these three key metrics.

3.3 Dataset
To our knowledge, there are currently no readily available gold
label longform spoken dialog summarization datasets, let alone
any hierarchical summarization datasets containing intermediate
summaries. To properly evaluate our system, we prepared a dataset
of 25 transcripts consisting of audio recordings to use as test data.
Transcripts were transcribed with speaker diarization using Google
Speech-to-Text.

Table 1: Aggregate Statistics from ASR Transcribed Dataset

Transcript Source Transcripts Minutes Word Count

Bloomberg Wealth 6 155 27,801
NPR: How I Built This 14 674 122,807
TED Talks 5 147 23,097

Total 25 976 128,685

Table 1 shows the three sources of interviews, how many min-
utes of audio was processed, and the total word count. We carefully
selected our recordings to evaluate how our complete system per-
forms when summarizing a diverse range of speakers and topics
such as finance, social issues, and medicine (A.1). 10 proportional
transcripts1 from each transcript source have been hierarchically
summarized with human annotators in order to provide interme-
diate summaries. Transcripts that were not annotated were used
subsequently in the annotation study (Section 5.2) [21] and the
qualitative study (Section 6).

The procedures mimic the hierarchical summarization process
of the System in Section 4. Starting with a longform transcript as
the source input, the hierarchical recursive annotation procedure
(A.2), is as follows:

(1) The source text is segmented using a fixed procedure, re-
ducing the complexity of annotator content selection by
narrowing the scope of input information.

(2) Annotators are then tasked with individually summarizing
each segment.

(3) All the user provided summaries are collected, finishing the
current level. For the next level, all the summaries are con-
catenated and dynamically re-segmented and the annotator
repeats step 2. Observe how the text is compressed at each
level by the summary compression rate.

(4) When the concatenated text is short enough (stop condition),
the process terminates.

All audio recordings consist 1, 2, or 3 speakers engaging in a
dialog about different topics ranging from business to geopolitics
to social sciences. All audio files are in English, although not all
speakers are native English speakers.

4 SYSTEM
In this section, we briefly review the baseline hierarchical dialog
summarization system as the initial foundation for our framework.
Next, we detail our speech intrinsic design motivations and our
corresponding technical contributions towards existing summa-
rization systems, focusing on the criteria defined in Section 3.2.
Our summarization framework is modular, not requiring any spe-
cific summarization model, and integrates external knowledge from
language models trained on various natural language tasks with
dialog heuristic constraints to construct a robust and unsupervised
abstractive summarization system. Recent research has leveraged
external models to improve broad domain summary quality by com-
bining knowledge-based approaches with seq2seq neural models
[31]. In a similar fashion with regards to leveraging external models
(i.e. transformer models trained for different language tasks such as
entailment [73]), we propose a hierarchical automatic summariza-
tion framework which emphasizes improving system robustness
with a specific longform dialog domain focus. We utilize multiple
different transformers including BART-L for dialog summarization,
PEGASUS for short abstractive summarization and T5 for grammar
correction. These transformers were primarily chosen based on
the pre-trained models that were available to the public on Hug-
gingFace [75], which is important in ensuring that our research is
reproducible and maintainable.
1We intend on releasing this dataset as a separate contribution in a separate work.
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Figure 1: Dialog Improvement Framework. The overall contribution of the system are a series of training agnostic speech
processing steps which improve overall summary text generation quality. Step 2 involves reordering input dialog to increase
coherence. Step 3 and 4 imputes vague pronoun references to assist readability and addresses grammatical errors. Step
5 encourages the system to generate more factually consistent summaries. This process is repeated in between recursive
summarization levels.

4.1 Notation Walk-through
Input source texts (i.e. initially the ASR transcript) containing 𝑛 sen-
tences are denoted by 𝑆 = (𝑠1, ..., 𝑠𝑛). The segmented instance of 𝑆
is defined as 𝑆𝑖 ∈ S, where each 𝑆𝑖 contains 1 or more sentences and
can be thought of as a portion of the original ASR transcript. Bold
faced capital variables indicate a collection of a list of sentences.
Each 𝑆𝑖 is iteratively and sequentially ingested by the hierarchi-
cal summarization system. Concretely, input segment 𝑆𝑖 is first
processed and summarized, before 𝑆𝑖+1 is processed.

The summary outputs from each level is given as 𝐻𝑖 ∈ H; each
𝑆𝑖 and 𝐻𝑖 correspond exactly, referred to as a segment-summary
pair (S,H). At this point in processing, the outputs H𝑗 become the
new inputs 𝑆 𝑗+1 at the 𝑗 + 1-th hierarchical level. The superscript 𝑗
indicates the current hierarchical level (e.g. 𝑆 𝑗 ), the 𝑗-th recursive
summarization iteration. References, or annotations, are gold label
human authored summaries and similarly denoted 𝑅 𝑗

𝑖
∈ R𝑗 . For

simplicity, the superscript 𝑗 is dropped unless otherwise noted; the
algorithm explanations assume an arbitrary recursive level 𝑗 . Please
refer to A.4 for more details.

4.2 Baseline Dialog Summarization System
The baseline hierarchical summarization system is adapted from
[37] and consists of three key components: a topic aware semantic
segmentation algorithm for dividing longform text, a summariza-
tion language model, and a procedure for establishing higher order
relationships [43, 60]. The initial semantic segmentation algorithm
is already well suited towards chunking dialog as it fundamen-
tally incorporates concepts that leverage coreferences and other
speech cues [38, 44, 65] to begin an initial chunking of the long-
form transcript. Between our framework and baseline, the initial
segmentation procedure is kept identical for subsequent analysis
and comparisons, and is not the focus of this work.

We refer to the "baseline" hierarchical summarization instance
as Baseline and an instance utilizing the framework containing
our contributions as System. The Baseline and System both use
two summarization language models a BART-L model that is fine-
tuned on the SamSum Corpus [18] to handle larger segmented
transcript chunks, and a PEGASUS paraphrase model for smaller
inputs (30 words or less). In between hierarchical recursive summa-
rizations, System performs Steps 1-4 (Fig 1, Section 4.3-4.5). Finally

the Baseline also adopts the hierarchical procedure from [37] as
its hierarchical merging procedure. Additional details can be found
in A.3.

4.3 Improving Adequacy: Entailment Clustering
for Temporal Dialog Cohesion

A challenge in processing speech is that most speech and conver-
sation is presented in an unstructured manner that may not be
cohesive (the degree of logical consistency [13] and continuity [5]
of text) or continuous. For example, a speaker discussing an idea
could trail off and revisit that same idea a few sentences later. This
leads to fragmented context and incoherently ordered thoughts
[20] in ASR transcripts, making it more difficult for a summariza-
tion language model to sufficiently capture higher order concepts.
Given the nonsequential temporal ordering in which speakers com-
municate, a reordering speaker of sentences can lead to improved
cohesion and context. This step leverages pretrained language mod-
els to determine entailment and similiarity to determine a new
ordering and segmentation of speech. See Figure 2.

4.3.1 Implementation. The operation starts with the previous hi-
erarchical level’s summary outputs H𝑗−1 = 𝐻

𝑗−1
1...𝑛 as S𝑗 = 𝑆

𝑗

1...𝑛
inputs where each individual summary 𝑆 𝑗

𝑖
is iteratively processed in

a streaming fashion. We consider three criteria to group summaries
into semantic clusters. Pseudocode and full procedure is given in
A.4.1.

(1) A well-formed semantic cluster should consist of summaries
that do not contradict one another [49]. Specifically a high
entailment beyond only a high semantic overlap (i.e. evalu-
ated by the cosine similarity of SBERT embeddings [62]) may
not necessarily ensure cohesiveness.

(2) Summaries belonging to the same cluster should discuss
the same entities. This is enforced by gathering the overlap-
ping set of detected nouns and coreferenced pronouns and
clustering if sufficient overlap is found.

(3) Semantic clusters should have a natural order of entailment.
A summary 𝑆 𝑗

𝑖
entails another if one is logical predecessor,

determined by a transformer language model trained on the
MultiNLI dataset [74]. This is a key distinction from prior
work as entailment allows dynamic assignment of cluster
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Figure 2: Entailment Clustering Process. To increase the summarization language model’s semantic comprehension of the
input text, the temporal ordering of dialog is rearranged and reordered to improve cohesion.

centers, in turn allowing for the procedure to reorient the
temporal order of S𝑗 = 𝑆 𝑗1...𝑛 in amanner that would be easier
for a summarization model to process and output complete
and semantically consistent summaries.

Entailment-based clustering is distinct because unlike the afore-
mentioned criteria, entailment is not symmetric. Because of this, we
can use entailment as a signal to dynamically reorder sentences into
a logically coherent progression. This is essential as rapidly mov-
ing between different topics and discussing entities out-of-order is
common in spoken dialog.

4.4 Improving Readability: Coreference
Imputation and Grammar Correction

Unlike formally written prose, conversation often contains ambigu-
ous references. After an entity (such as a noun or other object) is
introduced into a conversation, it is typically referred to using pro-
nouns and other deictic references. While recursively summarizing
concatenated inputs, the detrimental impact of vague references is
increasingly intensified at subsequent levels, impacting summary
readability. To rectify this, we propose using coreference resolution
to impute missing entities into vague pronoun references.

Moreover, the summarizer often introduces pronouns or refer-
ences in place of named entities – likely as an attempt to make the
text shorter. However, this adds additional vague or even halluci-
nated references to the summaries. Thus, the coreference imputa-
tion and grammar correction must be done at every hierarchical
pass of the summarizer to ensure references are concrete in the all
the summaries, including the shortest summaries.

4.4.1 Implementation. In this operation, each sentence in a sum-
mary is considered individually, 𝑆𝑖 = 𝑠1, ..., 𝑠𝑛 . Since coreferences
are typically accurate for a local context window, we only search
for coreference pairs in a limited sentence span. For example, an
"it" mentioned in the first minute of a speech is likely different
from an "it" at the end of the speech. We set our limited con-
text window to 3 summaries. Concretely, given a 𝑠𝑖 and a con-
text 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = [𝑠𝑖−3, 𝑠𝑖−2, 𝑠𝑖−1], any identified coreference from
𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 to 𝑠𝑖 is imputed into 𝑠𝑖 . The process then iterates by a single
sentence; for 𝑠𝑖+1, the new context is 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = [𝑠𝑖−2, 𝑠𝑖−1, 𝑠𝑖 ]. A
key observation of the procedure is that iteratively imputing coref-
erences will propagate an initial reference to subsequent pronoun
references.

Table 2: Coreference Imputation Example. The vague refer-
ence is given in blue with the coreferenced entity is bolded.
Subsequent grammar correction is shown in red. 𝑆1...𝑛 are gen-
erated summaries (previously recursive outputs H = 𝐻1...𝑛)
for any arbitrary recursive level.

Process Consecutive Text Segments

Vague
Reference

𝑆1: [...] What do we know right now about this
variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: It’s highly divergent from ...

Imputation

𝑆1: [...] What do we know right now about this
variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: This variant highly divergent from ...

Grammar
Fixed

s1: [...] What do we know right now about this
variant?
[...] 𝑆2, 𝑆3 not related
𝑆4: This variant is highly divergent from ...

Such imputations may induce syntactic grammatical errors (such
as subject verb agreements) due to imperfect insertions. Accord-
ingly we use a T5 [61] based neural grammar rewriter trained on a
fluency corpus [55] to correct for small grammatical mistakes. A
full procedure is given in A.4.2.

4.5 Improving Accuracy: Hallucination
Resolution

Hallucinations are a common artifact of large language generative
models due to the sheer corpus they are trained with. While these
large language models are able to output sentences with high real-
ism, we are interested in outputs that consistently and accurately
reflect the input. As such, text generations containing blatant hallu-
cinations or semantically differing meanings are unacceptable; they
represent factually incorrect summaries. However, not all halluci-
nations are bad. In fact, some hallucinations are useful abstractions
to generalize multiple ideas into a more succinct categorization.
An example of a positive hallucination would be replacing refer-
ences to cars, buses, and boats with the label vehicles. The goal is
to catch when summaries contain text that is semantically far from
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Figure 3: Hallucination Resolution Process. Through guided text decoding, the system re-ranks and selects the most plausibly
accurate summaries for subsequent recursive summarization.

the context that was summarized. "Vehicles" is a positive halluci-
nation because it is semantically close to the input ("cars, buses,
and boats"). However, if the summarizer produced text based on
its training data, that would likely produce negative hallucinations
which would not be semantically close to the input.

4.5.1 Implementation. The procedure is iterative: the system gen-
erates multiple summaries based on given parameters and subse-
quently filters out poor summaries, providing feedback to improve
the next iteration’s text generation. This procedure is limited to 3
runs per (𝑆𝑖 , 𝐻𝑖 ) pair.

Assuming the first summary has already been generated, we start
by addressing negative hallucinations. These are characterized by
the introduction of entities that are not generalizations of entities
from the input passage. We use a Part-of-Speech (PoS) tagger [2]
and Named Entity Recognition [34] to identify entities found in a
generated hypothesis 𝐻𝑖 and compare it to the set of entities found
in the original input 𝑆𝑖 . By using existing word knowledge sys-
tems [52], we can quickly and computationally tractably determine
whether or not𝐻𝑖 ’s hallucinated entities are proper generalizations
of existing entities or truly inconsistent with 𝑅𝑖 . Second, we use
an entailment model (identical to Alg. 1) with the original input
𝑆𝑖 as the premise and 𝐻𝑖 as the hypothesis and check for logical
consistency [49].

We adapt BEAM search to decode multiple candidate summaries
𝐻𝑘∈𝐾
𝑖

where 𝐾 = NUM_BEAMS [70] with the following parame-
ters:

(1) Block tokens. Summaries that contain flagged hallucinations
have the respective tokens passed in as blocked tokens, sup-
pressing the hallucinated words from being generated on
subsequent iterations2.

(2) Increasing BEAM Search Space. [70] Simultaneously, we in-
crease the diversity parameters for grouped beam search on
subsequent iterations to motivate generating more unique
candidate summaries.

2Critically, in the case of a false positive, where a hallucination is classified incorrectly,
it would limit the BEAM search space and limit the abstractive capabilities of the
language model.

After running guided BEAM search, we process all candidate
summaries and rank them based on their readability and accuracy
using Eq 1. For readability, we use a language model LM𝑤𝑓 𝑑 trained
on sentence well-formedness dataset3 to score the syntax quality (0-
1) of each summary. For accuracy, we use ROUGE-2 [40] to ensure
that the summary and the input passage are similar in content. Eq
1 gives (0-1) an estimate encompassing both of these attributes.

Quality(𝐻𝑖 , 𝑆𝑖 ) = 𝛼 ∗ LM𝑤𝑓 𝑑 (𝑆𝑖 ) + 𝛽 ∗ ROUGE2 (𝐻𝑖 , 𝑆𝑖 ) (1)

4.6 User Interface
4.6.1 User Interface Overview. Similar to previous hierarchical
browsing systems [37], we present an interface where users can
see all the Short Summaries on the left, then select any Short Sum-
mary to read more detailed information on the right (Figure 4).
The detail information here consists of two options: 1) reading the
corresponding long summary and 2) listening to the correspond-
ing clip from the original audio. Previous systems also included
medium-length summaries, but they were not seen as helpful to
readers – if users wanted more details on a Short Summary, it was
best to jump straight to the long summary which is often just a
cleaned up version of the audio with speech disfluencies removed,
but almost all details on the content preserved.

Although improving the readability, adequacy and accurate of
summaries is the core features that will improve hierarchical sum-
marization systems, we also introduce information cues to aid users
in browsing the summaries. Because of the black-box nature of ab-
straction AI summarization, users might not have an intuition of
how much information is being compressed in a Short Summary,
the quality of the summaries, or how much of the total information
they have seen so far. This information is critical to browsing an
navigating behavior as users decide where to keep browsing in
their current location or to move on.

3https://huggingface.co/datasets/google_wellformed_query, 𝛼 = 0.5 and
𝛽 = 0.5.
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Figure 4: System User Interface. The left hand side gives a digest of short summaries, broken up by semantic summary segments.
An estimate of how much total information is captured by these short summaries is given under "Total Information Displayed".
By moving the cursor onto a summary, the user is presented with additional information such as the summary’s estimated
quality, an estimate of how much additional information is contained in a longer more detailed summary, said more detailed
summary, and the original ASR transcript with the respective audio segment.

To explore whether information cues would assist with naviga-
tion and improve user experience, we introduce three heuristics
displayed near the top of the interface.

(1) Total Information Displayed: An estimation of the overall
amount of content the user has read and encountered; con-
tinuously updating as the user reads.

(2) Information Gain: An estimation of additional information a
user would gain relative to all information contained in the
audio file, by exploring further into the hierarchical levels
of the current Short Summary.

(3) Summary Quality: An estimation of the quality of the sum-
mary the user is currently reading.

The total information displayed heuristic show the percentage
of all the information (nouns and verbs) from the original transcript
that the user has seen thus far. When a user first enters the system
and sees only Short Summaries, the total information displayed
is typically 50%-70% – meaning if the users reads all the Short
Summaries they will have read a decent amount of information.
As the user clicks on a Short Summary to read more, the total
information displayed will increase to reflect the amount of new
information seen. If he user clicks on every Short Summary, total
information displayed will be 100%. This can help users keep track
on how much they have read.

The information gain heuristic is based on the proportion of
the nouns and verbs in a Short Summary which also appear in the
part of the transcript the Short Summary covers. (See information
retained defined in A.5) This is divided by the total information
(nouns and verbs) in the audio file to express the global amount
of information that can be gained by reading the transcript. It
typically ranges between +0% and +6%. Thus, if a user sees that
a Short Summary has "+5% information gain" it means that if the

read the original transcript they will recover 5 percentage points
of the total information (nouns and verbs) in the entire audio file. 5
percentage points is quite high, so it may be worth doing – quite a
bit of information has been left out. However, if the Short Summary
has less than +1% information gain, there probably isn’t much more
information worth reading behind the current Short Summary.

The summary quality heuristic is based on a weighted sum of
readability (syntax quality) and accuracy (ROUGE-2) (see eq. 1). It
typically ranges between 40% and 90%. Low summary quality can
be a sign of ungrammatical trailing sentences such as "The materials
created for the closing of the stores were". From reading the initial
summary, it is clear that key phrases were missing. "The [diversity
and inclusion] materials created for the closing of the stores were [used
by many other companies.]" High summary quality either indicates
that 1) the Short Summary did not compress anything out (which
is typical for ideas that are expressed in a single sentence, or 2)
when the material that was compressed was highly redundant. For
example, the Short Summary "We don’t know how to build lasting
relationships and key partnerships." has a relatively high summary
quality (70%). Almost everything that was compressed was filler
words on redundancy: "What we don’t know how to do is to build
strong relationships that are lasting that are valued and I think that’s
where we need to start is relationship building and key partnerships."
This Short Summary also has low information gain (+0.19%) because
almost no new entities are mentioned.

5 TECHNICAL EVALUATION
The quality of a summarization system revolves around its ability
to distill key ideas from many longer passages. Evaluating a lan-
guage model’s text generation is essential towards understanding
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Table 3: ROUGE-𝑁 comparisons of the Baseline and System. The 𝐹1 score for each ROUGE instance is reported and particular
emphasis is placed on ROUGE-2 for document (longform) level summary evaluation. While System outperforms Baseline on
all experiments, the ROUGE-2 Short Summary performance is distinctively better. System is run with all steps.

Model & Level- 𝑗 ROUGE−1 ROUGE-2 ROUGE−𝐿
Baseline-3 (Short Summary) 0.434 0.097 0.164
System-3 (Short Summary) 0.470 0.115 0.191
Short Summary % Improvement 8.0% 19% 23%

Baseline-2 (Intermediate Summary) 0.595 0.198 0.234
System-2 (Intermediate Summary) 0.641 0.214 0.260
Intermediate Summary % Improvement 7.7% 8.5% 11%

Baseline-1 (Long Summary) 0.670 0.405 0.432
System-1 (Long Summary) 0.711 0.463 0.471
Long Summary % Improvement 6.0% 14% 9.0%

the model’s performance and suitability for usage [45]. In this eval-
uation, the summary text generations 𝐻 𝑗

𝑖
∈ H𝑗 are investigated in

three aspects:
(1) The hierarchical level (superscript 𝑗 ) where the Short Sum-

mary is the highest hierarchial summarization level.
(2) The segment level (subscript 𝑖), where each segment sum-

mary pair, (𝑆𝑖 , 𝐻𝑖 ) is individually considered.
(3) The document level (𝐻𝑐 = Concat(𝐻𝑖 ∈ H), also discussed in

A.3.1), where a hierarchical level’s summaries are concate-
nated together and considered all at once.

Due to differences in subsequent level merging and segmen-
tation, Baseline and System will have different (pairwise mis-
aligned) individual segment inputs to each respective summariza-
tion system. This results in different content that is summarized,
making it impossible to individually directly compare correspond-
ing Baseline and System segment summaries. In other words,
𝑆
𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
≠ 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖
implying 𝐻𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖
cannot be

fairly compared. However, taking the concatenated individual seg-
ments at a document level and then comparing Baseline and
System summaries solves this problem4. For any given level 𝑗 ,
document summaries 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐 and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐 now holistically
summarize the entirety of the same initial input, and thus can
be compared to each other. The same considerations apply for
comparing individual Baseline or System summaries to a refer-
ence summary, 𝑅𝑐 . It follows that an individual segment summary
pair, (𝑆𝑖 , 𝐻𝑖 ), can only be assessed at a general level, and cannot be
compared between Baseline and System instance. Unsurprisingly,
given the number of optimizations in System that specifically ac-
count for speech and dialog based noises, we see a considerable
improvement over the Baseline instance - all without additional
training or labeled data.

5.1 Automatic Evaluation
We evaluate the Baseline and our System on the 10 (out of 25) tran-
scripts containing gold standard reference summaries using auto-
matic metrics (Table 3). We use a standard automatic metric ROUGE
[40] as cheap and inexpensive methods of evaluating our method
4This is a standard practice when evaluating longform text generation, typically seen
in machine translation.

and baseline. Concretely we evaluate 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐 and 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐
against 𝑅𝑐 for all hierarchical levels5 𝑗 ∈ {1, 2, 3}, though the most
weight should be given at the final 𝑗 = 3 Short Summary level. Per
Section 3.3, each transcript had 2 different annotators write hier-
archical summaries; as such the final score for a transcript is the
average ROUGE 𝐹1 scores of both of the 2 annotated references. We
use the following ROUGE variants: ROUGE-1 (unigram), ROUGE-2
(bigram), and ROUGE-𝐿 (longest common sequence). ROUGE-L can
be seen as a measure for fluency6 while ROUGE-1 and ROUGE-2
are used as proxies for adequacy. As noted in [40], ROUGE-2 is
better suited for evaluating document summarization; as a result
we place specific emphasis on ROUGE-2; in general ROUGE-2
scores are considerably lower than ROUGE-1 scores and is espe-
cially true for longer sequences. Lastly, we run ablation studies
to determine which of the steps in our pipeline are most effective
(A.6). Summaries are evaluated at the document level.

Digging into the results, we can observe three interesting phe-
nomena:

(1) A steady and drastic decrease in ROUGE score in Baseline
and System as a function of the hierarchical level, which is
explained by the increased difficulty of content selection due
to input length.

(2) A more pronounced improvement in the System’s generated
summaries at the Short Summary level. Clearly addressing
speech errors at each level before allowing them to com-
pound further is critical. This is further supported by the
ablation studies (Table 8) demonstrating how individual pre-
processing steps contribute to only a subset of total perfor-
mance gains.

(3) The overall low performance of summarization systems at
the Short Summary level is apparent and highlights the intrin-
sic difficulty of this dataset, and in particular, the prospect of
adequately and concisely summarizing 20-45 minute audio
files into only 500-850 words.

5Some transcripts have more than 3 levels due to their substantially longer run times
and initial word counts. In those instances, level 𝑗 = 3 skips directly to the final Short
Summary (last level) in the results.
6The intuition is that if a generated summary more closely follows the ordering of
words in the reference, then the generated summary is more fluent [15].
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Still, it is important to reiterate that ROUGE simply measures
lexical overlap and is not a substitute for human evaluation. The re-
liance on 𝑛-gram matching can be an issue for long-text generation
[29] as its evaluation does not contain coherence, flow, grammar,
and factual correctness.

5.2 Annotation Study Methodology
For human annotators, we evaluate on 8 transcripts that do not
contain gold labels. With a directed human annotated study we are
able to measure more explicit dimensions dimensions of readability,
adequacy and accuracy (Section 3.2). We hired 4 annotators that
were paid $20 per hour. All annotators are native English speakers
and were instructed to assess 10 of the the transcripts from Table 1
(2 Ted Talks, 4 NPR Podcasts, 2 Bloomberg Wealth). Each annotator
reported a total of 8 − 10 hours spent performing the evaluation
tasks. Note, this section is solely concerned with evaluating the
Short Summary, or the highest hierarchical level’s quality in specific
dimensions.

5.2.1 Readability, Accuracy, Adequacy Evaluation. Annotators were
instructed (in accordance with 3.2) to assess segment summary pairs
for:

(1) Readability on a 1 to 5 scale; is the individual summary fluent
and unambiguous, leading to easy reading comprehension?

(2) Accuracy in a binary Y/N fashion; is the segment’s summary
meaning consistent with the original source text?

(3) Adequacy in a binary Y/N fashion; does the segment’s sum-
mary sufficiently cover the main details contained in the
source text?

Each transcript was evaluated by 2 different annotators in order to
obtain an inter-annotator agreement score (Krippendorff’s Alpha)
[32]. A total of 𝑁 = 791 unique segment summary pairs given as
randomized rows each containing: a Baseline generated summary
𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

with the original portion of the ASR transcript 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

that summary 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

covers, and a System summary 𝐻𝑠𝑦𝑠𝑡𝑒𝑚
𝑖

with the original portion of the ASR transcript that 𝑆𝑠𝑦𝑠𝑡𝑒𝑚
𝑖

that
𝐻
𝑠𝑦𝑠𝑡𝑒𝑚

𝑖
covers; this is done only at the Short Summary ( 𝑗 = 3 or

the last level). Summaries are evaluated at the segment level.

Table 4: Readability, Accuracy, Adequacy human evalua-
tion of the Baseline and System generated Short Summaries
(Level-3). The lower inter-annotator agreement (IAA) scores
for Adequacy are italicized, emphasizing the inherent subjec-
tivity in evaluating summary adequacy; what one annotator
rates "adequate" has far more subjectivity than readability
and accuracy. System is run with all steps.

Model & Level- 𝑗 Readability Accuracy Adequacy
Baseline-3 3.55 0.78 0.63
System-3 4.10 0.87 0.74
% Improvement 15% 12% 17%

Baseline-3 IAA 0.26 0.28 0.18
System-3 IAA 0.24 0.27 0.16

5.2.2 Aggregate Short Summary Coherence. Lastly, annotators as-
sessed the overall document’s readability and coherence; in other
words, how well do 𝐻𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, 𝑐 and 𝐻𝑠𝑦𝑠𝑡𝑒𝑚, 𝑐 logically flow or
"hang together" [35]? Annotators were presented with all Short
Summaries consecutively and were instructed to count each time
they deemed there was confusion regarding logical consistency [13]
or continuity [5] between 2 sentences. Additional details on com-
putation and procedure are given in A.7. Summaries are evaluated
at the document level.

Table 5: Overall coherence of Short Summaries in Baseline
and System instances. A score of 1 indicates a perfectly co-
herent summary and a score of 0 indicates total dissonance
between sentences, computed by Eq. 4. System is run with all
steps.

Model Coherence (Short Summary)
Baseline-3 0.764
System-3 0.836
% Improvement 9.4%

6 QUALITATIVE USER STUDY
Although the technical evaluation shows that progress was made
in improving summary quality, the summaries are still imperfect.
Thus, we perform a qualitative evaluation to understand how people
use the system, what they find helpful and not helpful, and how
they perceived and used the information cues in the system.

We investigate the following questions:
• How do users perceive the quality of summaries?
• Do the heuristics driving the information cues match what
users expect?
• How do visual information cues impact users’ browsing
behavior?

6.1 Methodology
We recruited 10 participants7 (6 male, 4 female, average age of
25) from mailing lists of graduate and undergraduate students
and working professionals from a diverse range of technical back-
grounds; users were compensated at $20 per hour. Each study lasted
from 1 to 1.5 hours, averaging 1.2 hours, using the remaining 7 un-
evaluated transcripts. For this study we evaluate two instances
of our longform speech browsing system (4), an instance with vi-
sual information cues UI𝑐𝑢𝑒𝑠 , and an instance without, UI𝑏𝑎𝑠𝑒 . For
UI𝑏𝑎𝑠𝑒 , we remove the "Total Information Displayed" and the top
right box containing "Summary Quality" and "Information Gain".
The steps of this user study are order sensitive and conducted in a
semi-structured interview format.

Participants were first introduced to the concept of an AI-driven
summarization tool and given a brief tour of the UI𝑏𝑎𝑠𝑒 instance of
the summarization interface using the same control transcript, "Di-
versity and Inclusion". After a supervised tutorial stepping through
the hierarchical nature of the interface, participants were instructed
to choose a different file from the audio library that they found
7These are different individuals from the human annotators in Section 5 and 3.3.
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interesting and use UI𝑏𝑎𝑠𝑒 to browse the transcript. Users had no
time constraints browsing UI𝑏𝑎𝑠𝑒 and were told they could stop
either once they felt satisfied with the amount of content consumed
or at their leisure. This concludes UI𝑏𝑎𝑠𝑒 operations.

To acquaint participants with UI𝑐𝑢𝑒𝑠 ’s visual information cues,
we again used the same control transcript to introduce and ab-
stractly explain estimated summary quality, information gain, and
total information displayed. Specifically, users were told to note
the total initial information displayed percentage on the user inter-
face; this is the starting estimate for how much information can be
gained by solely reading Short Summaries. Participants were then
instructed to explore the control transcript and to fully understand
the information cues’ associated behaviors and intended purpose,
and ask any questions. Once done, using UI𝑐𝑢𝑒𝑠 , participants chose
a new unseen transcript to browse; participants were told to use the
visual information cues as they deemed fit. They were also informed
that it was perfectly acceptable to ignore some or all information
cues completely if they found them to not be beneficial.

After users finished browsing their selected audio filewith UI𝑐𝑢𝑒𝑠 ,
participants were told to listen to the complete audio to obtain a
complete understanding of the audio file’s underlying content in
order to properly reflect on how well the summaries and heuris-
tics (information cues) captured the information from the audio.
Participants studied and compared the Short Summary’s individual
information gain and summary quality components. Users were
then asked for their thoughts on UI𝑐𝑢𝑒𝑠 and if they matched what
they intuitively expected.

6.2 Findings
6.2.1 Summary Quality Perceptions. All 10 participants felt as
though the hierarchical summaries presented a complete digest
of the podcasts. Ultimately, all users were able to construct a coher-
ent and complete understanding of the transcript that they chose.
Users all noted how the hierarchical summarization was able to
adequately summarize content, allowing them to quickly decide if
a Short Summary was interesting or relevant. P5 in particular was
impressed by the "compression" that they observed when they were
listening to a Navy SEAL’s Ted Talk. "There was a detailed account
of a back and forth chase, but it was compressed into ’they shot at
the wrong people’, which was cool." Likewise, P7 was impressed by
the way the model was able to compress anecdotes and filter out
speech filler.

As expected, the Short Summaries were imperfect, and using the
hierarchy was necessary to understand some material. P6 described
instances were the summarization was insufficient but was able
to leverage the hierarchical nature of the system to recover com-
prehension by "clicking on a few of the summaries that were less
clear... to see the initial summary." Similarly, P3 said, "any summary I
found inadequate, I listened to the audio for more information." Both
the initial summaries and the audio segments were found useful to
regain comprehension.

Consistent with previous findings [37], there were times when
user read a Short Summary deemed it to be "suspicious". This could
be trailing sentences that were clearly missing information, or
contradictory Short Summaries with potentially misleading infor-
mation. when users encountered these, they often jumped ahead to

see if additional Short Summaries were also suspect. The users were
all aware that the summaries were automatically generated with
AI, and this behavior demonstrated the consequence of mistrust
in the AI. Thus, even with the improvements in summarization
accuracy, adequacy and readability, user trust and confidence in
the system is still a concern for users.

6.2.2 Perceptions of Information Cues. In general, participants felt
that information cues matched their expectations. 9 out of 10 par-
ticipants reported that the percentage of total information displayed
approximately matched what they expected after listening to the
entire podcast. 8 out of 10 participants agreement with the infor-
mation gain associated with each Short Summary - estimates how
much additional information could be gained from exploring more
detailed hierarchical levels. P1 stated that their expectation of infor-
mation gain was accurately reflected by the system "I think [amount
of information gain] does match what I expected. For example, the
section where [the speaker] shares an anecdote about her husband
supporting their family while she works seemed difficult to approx-
imate as she doesn’t really say it explicitly, and rather just shares
idioms about taking care of the children and house. In that section I
expected a lot of information to be left out, and it looks like that was
correctly identified."

Moreover, having information cues like information gain were
comforting to users and helped build their confidence in a system.
P1 explained "for a system to be aware of how much information it’s
leaving out...it makes it all that much more powerful."

However, the information gain heuristic is not perfect. P1 also
mentioned that this heuristic could at times be misleading and
rationalized why, "here, I was surprised because it seemed like [the
speaker] rephrased the same idea several times, but the system tagged
it as having a lot of information left out. My guess is that a lot of
synonyms (Primary Health Care, Ministries, Government) were used
interchangeably but all ended up meaning the same thing". Notably,
this reflects the drawbacks of a simple heuristic since it techni-
cally followed its designed and intended behaviors of Eq. 3 used in
estimating information gain.

Users who were less positive about information gain, found that
it had an upfront learning curve. For example, P2 found informa-
tion gain numbers confusing at first, so he "click[ed] through one
[Short Summary] with high error to understand what it meant." The
information gain figure abstracts out a lot of information. Although
a useful heuristic, it was also not immediately obvious how to in-
terpret it and required users to see multiple examples before they
were able to familiarize themselves with the concept and gain an
intuitive understanding for its use.

Overall, despite some learnability challenges and occa-
sional errors, information cueswere deemed accurate enough
to be useful to users and played an important role in building
confidence in a system that uses AI that is sometimes flawed.
We discuss ways of improving these metrics and their usability in
future work.

6.2.3 Browsing Behavior with Information Cues. When browsing
for information, users continually make the decision to either read
more where they are or to move on to a new "patch" of information.
Information cues in the system were designed to help users make
these decisions. Indeed, users reported that both information gain
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and summary quality help with the decision. Users did not mention
total information display to be helpful or harmful in this area.

High information gain was a cue to readers to keep reading more
in their current area. P8 noted that, "if a sentence in the summary
was indicated as contributing a lot to the information of the podcast,
I’d read it a little more carefully, or if it didn’t make sense I tried a
little harder to understand it." Specifically, P9 referenced an instance
where the information gain signified when it was "clear that data
has been lost. For example [in a Ted Talk (topic: Ukraine War)], the
summary stated: ’Sweden and Finland did not send arms to Ukraine in
the ColdWar’ while the longer summary stated: ’You even see countries
like Finland and Sweden sending arms to Ukraine and closing their
airspace, They didn’t even do it in the Cold War.’ providing me with
additional relevant content." Although the Short Summary captured
themain idea, the longer summarywas worth reading to explain the
historical context that was omitted by the summarizer, which this
user found valuable. The high information gain estimate indicated
this might be the case and cued him to keep reading.

Interestingly, other users relied on summary quality to decide
when to read more deeply or carefully in their current area. P7
noted that if "if the quality of a summary is supposed low, [I] would
listen more carefully [to the corresponding original audio portion]".
Thus, quality estimates for the AI generated summaries have the
potential not just to build users’ confidence in the system but also
to help users decide how to manage their attention while
browsing.

Low information gain was a signal for users to stop exploring
their current section and move on. P9 noted that the estimated
information gain [was] a useful tool for helping me decide if [I]
wanted to read the original transcript or not... that saves me time
from reading redundant information. Thus, information cues could
help with time saving from looking for more information
when there isn’t anymore to be found.

7 QUANTITATIVE USER STUDY
To understand the time savings posed by the system, we conduct
a controlled study measuring the time required to complete recall
and information foraging tasks with and without the system.

7.1 Methodology
We recruited 12 additional participants8 (8 male, 4 female, average
age of 28) from mailing lists of graduate and undergraduate stu-
dents and working professionals from a diverse range of technical
backgrounds; users were compensated at $20 per hour. Each study
lasted from 45 minutes to 1.5 hours, averaging 1.2 hours, and uti-
lized 4 source audio sources (from Table 7) and there associated
hierarchical summary data and heuristics represented through the
system interface described in 4.6. We designed a user study with
two experiments each including a control task and an experimental
task. Participants were randomly assigned 1 of the 4 audio sources
or its corresponding summary data for each task.

Authors of the paper, prior to seeing summary data for the 4
specific audio sources selected for this study, listened to the material
and extracted a list of salient points discussed in the audio files.

8These are different individuals from the human annotators in Section 5, 3.3, and the
participants from Study 1.

These points were extracted from the complete duration of the
audio. Next, we identified a set of points based on media of similar
format discussing the identical topic to create a set of points which
may have been in each selected audio source but were not.

The task order, experiment order, and assignment of audio to
each task was counterbalanced. Participants were never given the
same source audio or its associated summary data for multiple
tasks.

7.2 Experiment 1 Procedure: Recall
The participant was presented a source audio media and asked to
consume it using their regular listening/browsing habits in order
to gain an understanding of the material. Once the participant had
concluded consuming the media, they were presented with a list of
points (half of which were present in the source audio and half of
which were not). Participants were asked to select the points which
were present, but were not informed how many points in total
were correct or incorrect. In the experimental task, participants
were presented with the system interface described in 4.6 including
summary and heuristic data from a different source audio media
than their control task and asked to consume the material. They
were subsequently presented with a list of points with the same
format, distribution, and procedure as the control task and asked
to select the points they recalled from using the system interface.
For both the control and experimental task, participants were not
allowed to refer back to either the source audio or the system
while answering the evaluation questions. The duration of time
participants spent consuming material for each task was recorded.

7.3 Experiment 2 Procedure: Information
Foraging

The participant was presented with both the source audio media
and an associated list of points similar to those used in Experiment
1. The participant was then asked to utilize the source audio media
to identify the correct points in the list. For the experimental task,
the participant was presented with the system interface described
in 4.6 including data from a different source audio and an associated
list of points to evaluate and asked to perform the same task as
the control. The duration of time participants spent identifying the
correct points was recorded.

Throughout the experiment and each task, authors observed and
noted the participants browsing behavior. Additionally, at the end
of the experiment participants completed a survey regarding their
experience consuming the material through different mediums and
for different tasks.

7.4 Results
When using the system interface, participants on average performed
marginally better on both the Recall and Information Foraging
tasks, and notably spent nearly half as much time to achieve this.
Participant "Scores" were calculated as the percentage of correct
selection/non-selections of the list of points for each task.

In the control tasks, participants had a variety of consumption
styles based on their typical browsing behavior. The majority (8/12)
elected to listen to the media at normal speed while the remainder
(4/12) chose to listen at accelerated speeds. With regards to usage
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Table 6: The results of the User Study for Experiment 1 and Experiment 2, averaged across all participants

Task Control Score Exp. Score Score Diff. Control Duration Exp. Duration Duration Diff.
1. Recall 0.847 0.896 +5.73% 22m42s 11m55s -47.50%
2. Info. Foraging 0.905 0.972 +7.37% 13m34s 7m18s -46.17%

behavior on the system interface, all participants elected to utilize
the more detailed summaries, audio transcript, audio snippets, and
heuristic views with differing frequency. Most users (11/12) elected
for a depth first approach expanding many summaries as they
read through linearly as opposed to reading through the high level
summary first and going back to explore more deeply. Despite
this common depth-first based traversal, all participants typically
finished well ahead of the duration it took to listen to a comparable
length audio.

Users recalled material and found information as accurately us-
ing the system interface and took only half the time. Participants
performed on average 5.73% more accurately while using the Sys-
tem Interface for the recall experiment and 7.37% more accurately
for the information foraging task. However, in both experiments no
statistically significant difference was found between the control
and treatment groups for accuracy scores (Recall: t=2.037, p=0.066;
Info. Foraging: t=1.829, p=0.095) at p < 0.5. This may be due to the
small sample size, variations in material duration, and variations in
browsing and listening behavior. Despite the negligible difference
in accuracy performance, note the duration participants spent to
achieve comparable accuracy was statistically significant between
control and experimental tasks (Recall: t=-4.855, p=0.00051; Info
Foraging: t=1.829, p=0.00547) at p < 0.05. Users spent 47.5% less
time consuming material using the interface for the recall experi-
ment and 46.17% less time in the information foraging experiment
highlighting the significant time savings utilization of the System
Interface confers with minimal impact on information accuracy for
both recall and foraging tasks.

Users reported using information cues to inform their browsing
decisions. In both the recall and information foraging experiments,
participants were frequently observed expanding certain summaries
to access more detailed summaries, transcripts, or underlying audio
for some sentences but not others. Participants were selective about
which summaries they expanded. Multiple users expressed using
the Summary Quality indicator as a gauge for whether to trust
the high level summary sentence, P3 stated "The summary quality
[metric] was useful to help me decide whether to invest time expanding
a summary to read further."While users utilized the quality indicator
as a decision point for diving deeper into specific summary levels,
others utilized the information gain heuristic after expanding a
given summary to decide whether to read further with P5 stating:
"I would click open a sentence and if the information gain was low, I
would move on."

Users found the system especially useful in the Information For-
aging task. Participants found that generally the Short Summaries
provided a clear and comprehensible outline from which to navi-
gate. P12 stated "I could glean 80% of the information from the left
side view". Authors observed that participant’s experience with the
information cues aligned with their expectation of the heuristics

behavior, although there was a clear learning curve. P12 noted
"After a few iterations, I began to trust the summaries and quality
indicators more and could work faster." P8 further noted "When tran-
scription was incorrect, the summaries were incorrect and I had to use
the audio". This highlights another aspect of the interface which
allowed for users to error correct utilizing audio snippets when
needed. Multiple participants noted performing the same routine
to correct for transcription errors.

8 DISCUSSION
8.1 Explainability and Trust in Summarization
Abstractive summarization language models, while powerful, are
still opaque black boxes when presented alone to the user. From
reading a summary, users cannot interpret a summarizationmodel’s
rationale or decisions on how it distilled information. This lack of
understanding may lead to potentially catastrophic scenarios: a
reader could be unaware that important information was omitted
as an abstractive summary can misrepresent the content from the
original source passage. This is an important consideration since
the ability to decipher a language model’s decisions promotes trans-
parency and accountability of the system, ultimately driving users
to trust the outputs they are consuming.

With visual heuristic cues providing some information scent for
summarization quality and information compression, the user is
able to obtain a working intuition of the underlying summarization
models performance. As seen in Section 6.2, participants utilized
these cues to determine when to drill more deeply into their current
content exploration path or when to "circuit break" their informa-
tion foraging and move on to subsequent segments. Participants
also leveraged the estimates of a summary’s quality to know when
to be more vigilant of possible AI gaffes. However, it is important to
note the intrinsic design bias in the algorithms and heuristics behind
our system’s information cues. Assumptions and simplifications
can lead to unintended consequences and potentially misleading
users, as noted by P1’s rationalization in Section 6.2.2. Lastly, the
navigable hierarchy of summary segments presented alongside
original transcripts and audio segments further provides insight
towards a summarization system’s thought process by allowing
users the ability to see the intermediate steps, akin to "showing
your work" for a problem.

The visual heuristic cues employed in this system codify basic
properties of AI summarization: summary quality and information
compression. Our interface and evaluation therefore serve as a proof
of concept that such heuristics embedded alongside hierarchical
summaries can provide utility in this medium, suggesting future
work may be successful in discovering more effective heuristics
and visualizations for automatic summarization transparency.
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8.2 User-Tailored Summarization
Anotable considerationwhen discussing abstractive summarization
is its user-dependant nature and how different users may prefer not
only different content but also varying levels of detail in their own
summaries. For example, consider how a subject matter expert’s
ideal summary may prefer far greater detail and a different content
selection than that of a lay person’s. In order to create an effective
summarization system for content dense longform audio content,
we must address the subjective nature of user’s expectations in this
context; no single summary is a one size fits all.

Previous work has explored improving the flexibility of informa-
tion selected by state of the art summarization models by introduc-
ing hybrid language frameworkswhich pair customizable extractors
with abstractors in an effort to offer more granular and explainable
control of the extracted information [24]. Such approaches attempt
to address the problem from the model design front as opposed
to an interface and processing side. Our solution takes the latter
approach providing an interface which allows users agency to se-
lect their preferred level of detail and consume the information
accordingly. This approach, coupled with training agnostic post
processing solutions, decouples achieving user tailored summariza-
tion from specific and complex language model instances. It should
be noted, however, that solutions addressing this issue from either
side are not mutually exclusive and future work should explore the
efficacy of employing both approaches simultaneously.

8.3 System Limitations and Considerations
By converting audio into a transcript, there is a loss of emotion,
tone, and prosody found in speech. Intonation, pauses, and inflec-
tions often provide additional information and meaning beyond
the underlying spoken words. For example, sarcasm may be im-
mediately apparent in audio but it is difficult to detect, much less
preserve, in a text form, especially when summarized hierarchically.
Currently, our system does not address retaining this form of in-
formation. Although our interface still provides the original audio,
most users opted to only consume the summary text representation
as reading is more efficient than listening. This behavior is in line
with our expectations as the audio component is seen as a last resort
intended for recovering from ASR errors or model hallucinations.
However, future work should explore methods for translating these
forms of vocal information and conveying them to readers.

Additionally, users found there was a learning curve in order
to build an intuition and mental model of the provided indicators.
Though users found the system’s visual information cues useful,
they required additional work to understand. For example, users
had to gain a sense of the ranges of information compression and
summary quality (what is a 60% on a 0% to 100% scale?) by working
through examples. Many participants also found it compelling to
try to understand AI as a layer of abstraction between the audio
file’s speaker(s) and them as a listener. Users attempted to leverage
this mental model to identify why the system was occasionally
creating summary errors. Ultimately, although these indicators pro-
vided information scent and some transparency into the system’s
summarization process, the learning curve highlights the hurdles
in the adoption of AI assisted tools to a wider audience.

Tackling longer form discussions also presents many challenges.
While the algorithm presented would be able to recursively summa-
rize to any depth, the BART-L model can only summarize a specific
finite length of text. Future work can expand on trying different
models such as Longformer which is designed to take thousands of
tokens allowing us to increase the factor of summarization. Another
aspect of arbitrarily longer discussions is that the user interface
would have to showcase deeper layers of the summarization, but
this would be possible by presenting a collapsible scroll-able list of
intermediate summaries on the right side of the view of the existing
system. On the other hand, with respect to handling significantly
deeper summary hierarchies than this, future work may consider
instead exploring novel interface designs distinct from the evalu-
ated system which allow for more intuitive exploration, collapsing,
and parallel browsing of very high numbers of layers at once to
handle such scenarios.

8.4 Technical Limitations
Word recognition (transcription) of audio content has intrinsic ac-
curacy challenges within automated speech recognition systems.
Recall how ASR is the initial starting point of the entire system
pipeline; it follows how initial errors such as word recognition
and improper segmentation bounds already detrimentally bias the
subsequent downstream summarization model. Although speech
to text technology has grown more accurate over time, audio es-
pecially in noisy formats and uncommon domains contain many
disfluencies and recognition errors which still remain a challenge
to filter, translate, or accurately model. While our system attempts
to address intrinsic speech issues, future work can be dedicated
explicitly towards addressing word recognition errors. Additionally,
imperfect automatically generated summaries may cause misin-
terpretations of audio content. Though abstractive summarization
models have improved over time and addressed in this work, they
still suffer from common language model challenges. Model gener-
ated summaries may hallucinate statements with no basis in the
source audio leading to contradictory statements (accuracy), fail
to retain important concepts in the original content (adequacy), or
simply result in difficult to read outputs (readability).

8.5 Future Work & Implications
The system and interface evaluated in this work presents a novel
method for automatically processing abstractive AI transcribed
and generated summaries and presenting it in a navigable and
browsable format. Much of the work has focused on tackling this
summarization problem for audio, as this domain has additional
challenges and complexities not present in structured written text
and therefore served as a rigorous litmus test for the viability of
such an approach. However, many of the processes and optimiza-
tions utilized in this system could be applied directly to long-form
written text with similar effects therefore future work may consider
evaluating performance of these methods directly on such mediums.
Furthermore, as discussed in the limitations sections above, future
work should seek to explore evaluating integration with a wider
variety of long form language models as well as more versatile
interfaces which can intuitive and easily accept deeper levels of
hierarchical summarization.
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9 CONCLUSION
This paper presents a novel system for efficient navigation and con-
sumption of longform spoken dialogue by incorporating a series of
training agnostic language post processing steps with an explain-
able and navigable hierarchical summary interface that surfaces
a text representation of audio content alongside visual summary
heuristic cues to the user. Although, previous works have also lever-
aged hierarchical and abstractive summarization models to tackle
this medium they are susceptible to three key challenges of abstrac-
tive summarization: readability, accuracy, and adequacy. Intrinsic
challenges ranging from ASR errors to model hallucinations all
work to lower overall summary quality. The proposed system ad-
dresses these issues providing a better foundation for leveraging
hierarchical summarization as an improved medium for consuming
long form audio. Critically, our system showcases the ability of
these training agnostic post-processing solutions to take an off-the
shelf state of the art abstractive summarization model and apply
them effectively to the audio domain without additional training
or custom datasets. Furthermore, the system showcases how hier-
archical summaries in particular coupled with visual heuristic cues
provides a novel level of browsability and explainability in an AI
based system targeting this domain. Both qualitative and quantita-
tive evaluations show our system achieves statistically significant
improvement over previous hierarchical summarization interfaces
as well as state-of-the-art baseline summarization models.
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A APPENDIX
A.1 Dataset Audio Titles

Table 7: List of the Media in Dataset

Title
Bloomberg Wealth with David Rubenstein: Ron Baron
Bloomberg Wealth with David Rubenstein: Ray Dahlio
Bloomberg Wealth with David Rubenstein: Bill Ackman
Bloomberg Wealth with David Rubenstein: John Paulson
BloombergWealth with David Rubenstein: Marc Andreessen
Maria Van Kerkhove: How to end the pandemic – and prepare
for the next
The War in Ukraine Could Change Everything | Yuval Noah
Harari
Extreme Ownership | Jocko Willink | TEDxUniversity-
ofNevada
Elon Musk: The future we’re building – and boring
How to foster true diversity and inclusion at work (and in
your community)
How I Built Resilience: Kara Goldin of Hint
Lyft: John Zimmer (2017) How I Built This with Guy Raz
Leatherman Tool Group: Tim Leatherman
How I Built Resilience: Dr. Iman Abuzeid of Incredible Health
Burt’s Bees: Roxanne Quimby (2019)
Springfree Trampoline: Keith Alexander & Steve Holmes
(2019)
Coinbase: Brian Armstrong
Tate’s Bake Shop: Kathleen King (2019)
How I Built Resilience: M. Night Shyamalan
How I Built Resilience: Elisa Villanueva Beard of Teach For
America
Health-Ade Kombucha: Daina Trout
Chipotle: Steve Ells (2017)
How I Built Resilience: Lindsay Peoples Wagner of The Cut
Maverick Carter on Building the LeBron James Empire | The
Limits

A.2 Hierarchical Dataset Annotation Details
First we are given an input source text (ASR transcript) which
contains 𝑛 sentences, denoted as 𝑆0 = (𝑠1, ..., 𝑠𝑛). The segmented
instance S0 is defined as 𝑆0

𝑖
∈ S0. The superscript 𝑗 indicates the

current hierarchical level (e.g. 𝑆 𝑗 ).
The intermediate summary outputs from each level is given as

𝐻
𝑗
𝑖
∈ H𝑗 . The concatenated summary is given by 𝐻 𝑗,𝑐 ; the su-

perscript 𝑐 (for concatenated) is indicates the individual summary
outputs have been concatenated. Outputs can be used as individ-
ual segment-summary pairs (S𝑗 ,H𝑗 ) for 𝑗 ∈ |𝑙𝑒𝑣𝑒𝑙𝑠 | for training
and test data. Additionally, inputs and outputs can be used at the
document level where all segment-summary pairs are respectively
concatenated in order (𝑆 𝑗 , 𝐻 𝑗,𝑐 ). Since we are annotating, theH for
"hypothesis" is dropped and now referred to as R for "reference".

A.2.1 Procedure Walk-through. For simplicity, we drop the 𝑗 super-
script notation denoting level. The input source text 𝑆 = (𝑠1, ..., 𝑠𝑛)

is first segmented into a smaller, more manageable inputs: S =

[(𝑠1, ..., 𝑠𝑖 ), ..., (𝑠 𝑗 , ..., 𝑠𝑘 ), ..., (𝑠𝑙 , ..., 𝑠𝑛)] where 1 < 𝑖 < 𝑗 < 𝑘 < 𝑙 <

𝑛. Observe how 𝑆 now becomes S as it is a collection of segments
of sentences, such as 𝑆𝑖 = (𝑠 𝑗 , ..., 𝑠𝑘 ), which is now an individual
input to a summarization model.

For each 𝑆𝑖 ∈ S the annotator writes a summary 𝑅𝑖 ∈ R creating
segment-summary pairs. Here, the annotator has the option of
including additional sentences as context for an input segment 𝑆𝑖
from preceding (𝑆0<𝑖 ) and succeeding (𝑆𝑖<𝑛) segments. An instance
of 𝑆𝑖 is made where the additional context is prepended or appended
accordingly (𝑆

′
𝑖
) and set aside for final individual segment-summary

pairs that now have all the required context9. 𝑆
′
𝑖
is not used for

future levels. This concludes the process for one level and is repeated
identically until a termination condition is reached (final summary
length).

A.2.2 Annotators. 10 annotators were chosen, all English profi-
cient, having an undergraduate degree in the United States. Annota-
tors were assigned 2 different transcripts, ensuring each transcript
was annotated by 2 different individuals. Annotators noted this was
an extremely time intensive process, resulting in each transcript
requiring 5-6 hours for a total of 10-12 hours.

A.3 Hierarchical Summarization System Details
All semantic segmentation procedures, language models, and pa-
rameters are kept constant for a fair basis of comparison. Experi-
ments were run on a single RTX 3090; instances where several large
transformer models were required to be simultaneously loaded into
memory (such as Alg 1), could be easily fit (1̃5GB) within the 24GB
of VRAM. For transparency, System’s inference, with all steps, typ-
ically takes around 3-5x longer (usually 8-10 minutes per transcript,
with the obvious exception for longer transcripts) than Baseline’s
inference.

A.3.1 Compression Ratio. Another important aspect is the com-
pression ratio of the generated summaries. The individual segments
𝑆𝑖 ∈ S are iteratively summarized resulting in the same number
of segment summaries 𝐻𝑖 ∈ H. As such, the compression ratio
can obtained by treating the segments in a document level manner.
This is done by concatenating H into 𝐻𝑐 (where the 𝑐 indicates
its concatenated form) and using the unsegmented instance of the
input 𝑆 . The compression ratio is thus defined as:

Compression_Ratio(S,H) = |Concat(𝐻𝑖 ∈ H) ||Concat(𝑆𝑖 ∈ S) |
(2)

Note that the norm notation | · | is used to indicate the number of
words in the text passage. While an input can be compressed to
an arbitrarily length due to the recursive nature of the hierarchial
summarization framework and is dependant on the original in-
put’s length, summarization levels are stopped at around a 15%-25%
compression rate for both System and Baseline summaries. Re-
garding the initial input length, longer transcripts would be further
recursively summarized.

9Because of the possibility of adding context, the maximum length per each segment
was given additional tolerance to fit within a transformer model.
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A.4 System Pseudocode Procedures
A.4.1 Entailment Clustering Details. Additional details on the en-
tailment clustering procedure are given in Alg A.4.1.

Algorithm 1: Entailment Clustering Procedure. The proce-
dure is a core stick-breaking problem, determining which
summaries should be concatenated for further summariza-
tion in a manner that maximizes cohesive similarity.
Input: This procedure uses the following inputs and models.

(1) Input: List of summaries S𝑗 = 𝑆 𝑗1...𝑛 . For simplicity the
hierarchical level superscript 𝑗 is dropped.

(2) Model𝑀𝑆𝑇 : Embedding Sentence Transformer (SBERT),
outputs a 0 to 1 score

(3) Model𝑀𝑁𝐿𝐼 : MultiNLI Language Model (ROBERTA),
entailment probability is outputted (0 to 1)

(4) Model𝑀𝐸𝑁𝑇 : Entity Tagging Language Model (FLAIR),
number of overlapping entities is outputted

(5) Hyperparameters:
• 𝑝𝑡ℎ = 0.05: Threshold cutoff for similarity
• 𝑝𝑟 = 3: Maximum visible range for concatenating
streaming summaries
• 𝑝𝑙𝑒𝑛 = 72: Maximum word length for a summary

(6) Output: 𝐿𝑜𝑢𝑡 , list of combined and reordered summaries
1 𝐿𝑜𝑢𝑡 ← list();
2 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← list();
3 for 𝑆𝑖 ∈ S do
4 if |𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 | ≤ 3 then
5 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 .append(𝑆𝑖 );
6 continue;
7 if |𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 | > 𝑝𝑟 then
8 Remove 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [0] and append to 𝐿𝑜𝑢𝑡
9 𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← list();

10 for 𝑆𝑘 ∈ 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 : |𝑆𝑘 | ≤ 𝑝𝑙𝑒𝑛 do
11 𝑠𝑖𝑚 ← 𝑀𝑆𝑇 (𝑆𝑖 , 𝑆𝑘 );
12 𝑒𝑛𝑡 ← 𝑀𝑁𝐿𝐼 (𝑆𝑖 , 𝑆𝑘 );
13 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑀𝐸𝑁𝑇 (𝑆𝑖 , 𝑆𝑘 );
14 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 ← NORM(𝑠𝑖𝑚 · 𝑒𝑛𝑡 );
15 if 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 > 1 then
16 𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 .append([𝑆𝑘 ,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒])

17 𝑐𝑐ℎ𝑜𝑠𝑒𝑛 ←MAX(𝑐𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 );
18 𝑜𝑟𝑑𝑒𝑟 ← Higher Entailment Between𝑀𝑁𝐿𝐼 (𝑆𝑖 , 𝑐𝑐ℎ𝑜𝑠𝑒𝑛)

and𝑀𝑁𝐿𝐼 (𝑐𝑐ℎ𝑜𝑠𝑒𝑛, 𝑆𝑖 );
19 𝐿𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 .append(concatenate(𝑜𝑟𝑑𝑒𝑟 ));
20 return 𝐿𝑜𝑢𝑡

A.4.2 Coreferenced Imputation and Grammar Correction. Addi-
tional details on the coreference imputation procedure. 𝑆𝑖𝑚𝑝𝑢𝑡𝑒
is the summary to have all coreferences imputed from a previous
context 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 . The function AllenNLPCoref obtains all corefer-
ences found in the concatenation between 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 and 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 ;
𝑐 𝑗 [1] ∈ 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 is the ending coreference ending in 𝑆𝑣𝑎𝑔𝑢𝑒 .

Algorithm 2: Coreferenced Imputation and Grammar Cor-
rection Procedure.
Input: This procedure uses the following inputs and models.

(1) Input: List of summaries S𝑗 = 𝑆 𝑗1...𝑛 . For simplicity the
hierarchical level superscript 𝑗 is dropped.

(2) Model𝑀𝐶𝑅𝐹 : AllenNLP coreference resolution model,
outputs the start and end index of a coreferenced word pair

(3) Model𝑀𝐺𝑅𝑀 : 𝑇 5 trained neural grammar rewriter
(4) Hyperparameter 𝑝𝑤 = 3: coreference context window
(5) Output: 𝐿𝑜𝑢𝑡 , list of coreferenced and grammatically

corrected summaries.
1 𝐿𝑜𝑢𝑡 ← list();
2 for 𝑖 ∈ |S| do
3 if 𝑖 < 𝑝𝑤 then
4 𝐿𝑜𝑢𝑡 .append(𝑆𝑖 );
5 continue;
6 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ← [𝑆𝑘 ∈ S : 𝑖 − 𝑝𝑤 ≤ 𝑘 < 𝑖];
7 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 ← S𝑖 ;
8 𝑐𝑜𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ←𝑀𝐶𝑅𝐹 (𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 );
9 for 𝑐 𝑗 ∈ 𝑐𝑜𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 : 𝑐 𝑗 [1] ∈ 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 do
10 Impute 𝑐 𝑗 [0] word reference into 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 [𝑐 𝑗 [1]]];
11 𝑆𝑖𝑚𝑝𝑢𝑡𝑒 ← 𝑀𝐺𝑅𝑀 (𝑆𝑖𝑚𝑝𝑢𝑡𝑒 );
12 𝐿𝑜𝑢𝑡 .append(𝑆𝑖𝑚𝑝𝑢𝑡𝑒 );
13 return 𝐿𝑜𝑢𝑡

A.5 Information Retained Rationale
Information theory is a popular framework for analysing the com-
pression and completion of information in natural language process-
ing. While information theory relates information to the number of
bits needed to disambiguate probabilistic uncertainty, we recognize
that such an analysis, when applied to generated text, requires
constructing a global joint distribution over users’ subjective in-
terpretations of different sentences. As such we opt for a simpler
analysis.

Simplifying, we define a proxy for the passage’s information
content to be the total sum of nouns and verbs identified in a
passage. The rationale and oversimplification is as follows: the
most important words within a sentence are typically proper nouns,
common nouns, verbs, and other named entities. We use a state-of-
the-art NLP parts of speech tagger to identify all verbs and noun
occurrences in the original transcript.

To evaluate the proportion of information retained (abbr. IR) by
a particular summarization framework over a particular input sum-
mary, we compare the original transcript ASR input 𝑆𝐴𝑆𝑅

𝑖
spanned

by a particular summary 𝐻 𝑗=3
𝑖

(in other words, the amount of text
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Table 8: Ablation study of individual steps from the System framework. Scores that are close to Baseline’s performance are
colored in blue and scores that underperform Baseline are colored in red.

Model & Level- 𝑗 ROUGE−1 ROUGE−2 ROUGE−𝐿
System-3 (Reference) 0.470 0.115 0.191
System-3 Clustering Only 0.445 0.108 0.187
System-3 Imputation Only 0.434 0.110 0.187
System-3 Guided Decoding Only 0.432 0.108 0.184

System-2 (Reference) 0.641 0.214 0.260
System-2 Clustering Only 0.602 0.206 0.251
System-2 Imputation Only 0.613 0.201 0.247
System-3 Guided Decoding Only 0.595 0.199 0.221

System-1 (Reference) 0.711 0.463 0.471
System-1 Clustering Only 0.690 0.446 0.448
System-1 Imputation Only 0.692 0.449 0.451
System-1 Guided Decoding Only 0.691 0.441 0.450

that 𝐻𝑖 is responsible for summarizing). This is done for Short Sum-
maries. We run a parts-of-speech (PoS) tagger to count the overlap
of (unique) nouns and verbs in the generated summary and source
text to construct the amount of information retained by our sys-
tem. This heuristic has the behavior of punishing the summary
for omitting the previously specified grammatical objects. This can
be viewed as a modified instance of ROUGE-1 (with the grammar
objects filter) recall, which computes the word overlap of a source and
reference, out of all reference words.

𝐼𝑅(𝐻 𝑗=3
𝑖

, 𝑆𝐴𝑆𝑅𝑖 ) =
Count(𝑤ℎ ∈ PoS(𝐻

𝑗=3
𝑖
))

Count(𝑤𝑠 ∈ PoS(𝑆𝐴𝑆𝑅𝑖
))

(3)

Note:𝑤ℎ and𝑤𝑠 are each word in the generated summary and
input source text, respectively. Summing over 𝐼𝑅(H𝑗=3, S𝐴𝑆𝑅) es-
timates the overall information captured by all Short Summaries,
resulting in a 0-1 fraction. Complete Information Retained estimates
typically result around 0.40 − 0.60. Due to the resemblance with
ROUGE-1 recall, we expect the heuristic to correlate and perform
similarly well. We experimented with a weighted version of Eq.
3 where proper nouns and named entities were given increased
importance, but did not observe significantly material changes.

A.5.1 Sample User Flow. Here we provide a sample user work-
flow of the interface detailed above. Assume a piece of 30 minute
longform audio content yielded 30 Short Summary segments out of
the ASR, hierarchical summarization, and post processing pipeline
outlined through Section 4.3-4.5.

(1) User reads Short Summary segments 1-10 via the left side
document and is satisfied with the level of information they
are consuming.

(2) Upon reading Short Summary 11, the user becomes more
interested and decides they would like to learn more.

(3) The user hovers over Short Summary 11, surfacing summary
metrics and the right side view with a more detailed sum-
mary. The user notes the summary quality is high as well
as the estimated information gain (Eq. A.5), suggesting the
intermediate summary is worth reading.

(4) The user reads the intermediate summary that Short Sum-
mary 11 is based upon and is satisfied, and decides not to
read the original transcript for this segment.

(5) The user continues on reading Short Summaries 12-20.
(6) The user reads Short Summary 21 and suspects the summary

is erroneous, disfluent or confusing due to new terminology
not related to what they have thus far encountered.

(7) The user hovers over Short Summary 21 and sees the sum-
mary quality for this segment is low confirming the users
suspicion.

(8) The user sees the estimated information gain to be low for
segment 21 (in this case due to the erroneous "new terminol-
ogy" being the only meaningful information in the current
segment) hinting that the intermediate summary and tran-
script do not add much additional information. As a result,
the user opts to listen to the original audio while skimming
the transcript. The user determines the ASR transcription
erroneously transcribed the "new terminology" leading to
an inaccurate summary and now understands this "new ter-
minology" was not present in the audio.

(9) The user notes at this point, they have been exposed to 80%
of the total information contained in this content based on
the global count on the left side view, and decides to quickly
skim the remaining high level segments 22-30 as they are
satisfied with the information they have consumed already.

(10) The user concludes consuming the content, having a clear
understanding of the content being conveyed by the under-
lying audio, despite only having listened to a minimal subset
of the original audio itself.

A.6 Ablation Studies
We run separate instances of our System’s pre and post process-
ing steps: coreference imputation 4.4, cohesion clustering 4.3, and
guided decoding 4.5. In comparison to the full method’s (System)
results in Table 3, individual aforementioned components usually
improve, with the exception of Level-2’s Guided Decoding. The
offending score is italicized in red in Table 8, which under-performs
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the baseline by 5%. Scores that are close to Baseline’s performance
are colored blue.

Level-2’s Guided Decoding’s behavior is difficult to precisely
ascertain; however, we hypothesize that the restrictions placed by
guided decoding on the text generation adversely affect ROUGE
evaluation due to the rejection of inconsistent candidate summaries.
It is important to note that ROUGE cannot evaluate the consistency
(accuracy) of a text generation and must be done with a human;
unfortunately running a comparison study dedicated to ablations
is far too costly.

Moreover, these performance gains are not purely additive in
their improvement nature. That is to say, these are not strictly
exclusive in performance gains; total performance gains likely share
overlap in all 3 steps and is difficult to truly disentangle which
pipeline steps improved specific dimensions from 3.2.

A.7 Aggregate Coherence Details
To calculate the overall coherence of a list of Short Summaries,
we assess the overall document holistically. For this evaluation,

sentences are treated pairwise and individually iterated (by one).
Annotators were told to count the pairwise dissonances between
sentences, regardless of summary boundaries. In the instance where
the underlying content had a shift in content, such as a break in
between two separate summaries, was not counted. However, in
the opposite case, when there was a break between summaries but
the pairwise summaries were clearly related and separated, the
imperfect split was punished and counted in the dissonance tally.
This is denoted by the function 𝐵𝑅𝐸𝐴𝐾 (). The coherence score, Eq.
4, is computed by the fraction of incoherent sentences out of all
pairwise sentence pairs.

𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝐶𝐸 (H𝑗=3) = 1 −
∑𝑠∈𝑆
𝑖=1 1(𝐵𝑅𝐸𝐴𝐾 (𝑠𝑖−1, 𝑠𝑖 ))

|H𝑗=3 | − 1
(4)

A perfect score of 1 would result when there are no issues with
sequential ordering and a minimum score of 0 would result when
every possible pairwise ordering is problematic. Note that this is
ultimately a subjective task to the reader to deem what is coherent
and what is not. Annotators were told to use their best judgment.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Automatic Speech Recognition and Summarization 
	2.2 User Browsing Behaviors

	3 Background on Automatic Hierarchical Summarization
	3.1 Challenges and Approaches for Summarizing Longform Text
	3.2 Criteria for Improving the Usability of Hierarchical Summaries for Audio
	3.3 Dataset

	4 System
	4.1 Notation Walk-through
	4.2 Baseline Dialog Summarization System
	4.3 Improving Adequacy: Entailment Clustering for Temporal Dialog Cohesion
	4.4 Improving Readability: Coreference Imputation and Grammar Correction
	4.5 Improving Accuracy: Hallucination Resolution
	4.6 User Interface

	5 Technical Evaluation
	5.1 Automatic Evaluation
	5.2 Annotation Study Methodology

	6 Qualitative User Study
	6.1 Methodology
	6.2 Findings

	7 Quantitative User Study
	7.1 Methodology
	7.2 Experiment 1 Procedure: Recall
	7.3 Experiment 2 Procedure: Information Foraging
	7.4 Results

	8 Discussion
	8.1 Explainability and Trust in Summarization
	8.2 User-Tailored Summarization
	8.3 System Limitations and Considerations
	8.4 Technical Limitations
	8.5 Future Work & Implications

	9 Conclusion
	References
	A Appendix
	A.1 Dataset Audio Titles
	A.2 Hierarchical Dataset Annotation Details
	A.3 Hierarchical Summarization System Details
	A.4 System Pseudocode Procedures
	A.5 Information Retained Rationale
	A.6 Ablation Studies
	A.7 Aggregate Coherence Details


